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Abstract

The increase in the pointing accuracy requirements of space vehicles has made
it mandatory to take into account the structural flexibilities in the transfer func-
tion relating control torques to attitude angles. This report provides a finite
element formulation of the governing equations of the perturbations and small
vibrations of flexible structures undergoing arbitrary translations or rotational
motion, or both. The structure may or may not contain dampers, or rotating parts
on flexible or rigid mounts. Having obtained the linearized governing equations,
an approximate but practical method is described for obtaining the transfer
function relating control torques to attitude angles.
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On Small Vibrations and Perturbations of Flexible Bodies

Undergoing Arbitrary Nominal Motion

|. Introduction

The need for inclusion of the structural flexibilities in
the “dynamics block” of the attitude control system of
spacecrafts has been given in Ref. 1. A summary of the
state of the art, and a discrete formulation with a method
of obtaining the transfer function relating control torques
to attitude angles are given in Refs. 2 and 3. Since the
linearized equations of perturbations are obtained from
those of the general motion with not all the nonlinearities,
they are not complete. Moreover, the approximate numer-
ical method suggested in this reference for obtaining the
transfer function rapidly becomes impractical with
the increased number of degrees of freedom.

In this work, the linearized governing equations of
small vibrations and perturbations of flexible bodies
undergoing arbitrary motion are obtained in discrete
form by means of a finite element technique without
first deriving the governing equations of the arbitrary
motion. The governing equations thus obtained include
those of Ref. 3 as a special case. Also an approximate
numerical method is given for obtaining the transfer
function relating control torques to attitude angles. This
method is a practical one, since it preserves the banded-
ness of the coeflicient matrices. In what follows, only
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the repeated latin subscripts , j, p, and g imply summation
over the range.

The flexible body is considered as the assembly of
(n + 1) subbodies interconnected by elastic springs. Let
V denote the total material volume of the body, and v;
the material volume associated with the ith subbody,
such that

V= i v; (1a)

Let v denote unit mass, and m; the mass of the ith sub-
body. Then

mi:/vdu (i=01,--,n) (1b)

Let e denote the position vector of any particle in the
ith subbody, relative to its mass center before perturba-
tions. Therefore

/veodv =0

(i=01,--,n) (1e)



where the index in the integral bounds is also the index
of the indexable quantities of the integrand. Denoting the
position vector of any particle in the subbody with p? and
the position vector of the mass center of this subbody
with RY, relative to the mass center of the whole (n + 1)
body system before perturbations, we may write

pi =R} + e (1d)

and

/vp;? dv=20 (1e)

13

where the repeated index indicates summéﬁon over the
range of zero to n. With the help of (1d), (1b), and (1c),
Eq. (1e) reduces to

R m; =0 (1f)

where the repeated index shows summation over the
range of zero to n. Let p? denote the position vector of
a particle in the ith subbody, and X denote the position
vector of the mass center of the whole system, relative
to an inertially fixed coordinate system, such that

p; =X + p? (1g)

CENTER OF MASS OF

i susBODY BEFORE
PERTURBATIONS

CENTER OF MASS OF

" suBBODY IN
PERTURBED STATE

i™ sUBRODY BEFORE
PERTURBATIONS

INERTIALLY FIXED
COORDINATE SYSTEM

or, by the use of (1d),
pl =X+ R} +e! (1h)

Let ¢ and 0 denote the perturbation translation and the
perturbation rotation, respectively, of the whole system,
and u; and B; denote the perturbation translation and
the perturbation rotation of the ith subbody relative to
the zeroth subbody, respectively. Let e;, R;, p;, and p;
denote the quantities in the perturbed state correspond-
ing to 2, RY, p?, and p?, respectively. With the help of
Fig. 1, the linearized relationships between these quan-
tities may be written as

Ri=Ri+e—RIX0+u, (2b)

pi=pite—(RI+e) XO0—(eXB)+u
(2c)

Pi=p)+e— (RI+el) X0 — (e XB)i+wm
(2d)

If we assume that the system is subjected to disturbance
torques but not to disturbance forces, the position vector

" susBoDY IN
PERTURBED STATE

(o+8)x o)

P
0 (NOSUMON )
i

POINT OF SYSTEM
WHICH COINCIDES
WITH CENTER OF MASS
OF WHOLE SYSTEM

BEFORE PERTURBATIONS
CENTER OF MASS OF

WHOLE SYSTEM
AT ALL TIMES

Fig. 1. Sketch for the definitions of various vectors
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X always defines the trajectory of the mass center of the
whole system at all times, and ¢ defines the location of
the centroid before perturbations, relative to the point
defined by X. The first objective of this work is to obtain
the governing equations on ¢, 0, u;, and B, i = 1,2,---, n.

ll. Governing Equations

In this section the governing equations are derived in
vector notation. The four groups of equations are a set
of compatibility equations, n number of force equilibrium
equations of subbodies, n number of moment equilibrium
equations of subbodies, and a moment equilibrium equa-
tion of the whole system.

A. Compatibility Equation

Assuming that the boundaries of v;, i =0,1,---,n do
not change appreciably during the perturbations, we
may write

/VpidDZO

(i=01,--,n) (3a)

B. Force Equilibrium of Subbodies

With the help of (2¢), (1e), (1f), (1c), and (1a), Eq. (3a)
may be reduced to

(f‘_, mi> e+ mu; =0 (3b)

i=0

or, by defining p; as

(8b) may be rewritten as

¢+ iy = 0 (3d)

where the repeated index means summation over the
range of 1 to n. Equation (3d) may be considered as a
geometric compatibility equation.

Let £° denote the forces acting at the mass center of the ith subbody before perturbations. Let F; denote forces
created by the perturbations at the mass center of the ith subbody. The force equilibrium equations of the sub-

bodies in the unperturbed state may be written as

/ vpodo + £ =0 (i= -, n) (4a)
and the force equilibrium equations in the perturbed state are
/vf)dv+f2——f§.’><9—(f°><[5)i+Fi=O (i=12-,n) (4D)

Substracting (4a) from (4b), one obtains

/v('}i—'[')O)dv-l—Fi—f%Xe—(f"X[?’)i:O

Substituting p; from (2d) and using (1b) and (1¢), after cancellation one finally obtains

(mii); — (mR°); X 8 — 2(mR°); X 6 — (MR°); X & + mé +F; — (f* X B); —£9 X 0 =0 (i=1,-,n)

(4d)

which are the force equilibrium equations of the subbodies. In Egs. (4), dots over symbols indicate differentiation
with respect to time. If a parenthetical quantity carries a subscript, this implies that all the indexable quantities
within the parentheses carry the same subscript. These conventions are used throughout this work.

JPL TECHNICAL REPORT 32-1477



C. Moment Equilibrium of Subbodies

Let £ denote the moments acting at the mass center of the ith subbody before perturbations, and ¥, those mo-
ments created by the perturbations. The moment equilibrium of the subbodies in the unperturbed state may be
written as

A ve® X e’dv + £ =0 (i=12,---,n) (5a)
and the moment equilibrium equations in the perturbed state are
ﬁ- ve X édv + £y —f¥ X8 — ("X B); + F, =0 (i=1,-:,n) (5b)
Subtracting (5a) from (5b), one obtains
[;iv(eXé'——e”X'éf’)dUJrF’i—f‘;’XO——(f‘”Xﬁ)i:O (i=12---,n) (5¢)
Substituting e; from (2a), and rearranging, one finally obtains

/V[é°><(e°><[5)—e°><(é°><[5)—2e°><(é°><|3)—e°><(e°><i§)+a=:°><(e°><e)—e°><(a=:°><9)

i

— 262X (6° X 0) —e° X (e X 6)]dvo + F, — (f* X B); — ¥ X 0 =0 i=1,-,n) (5d)

which are the moment equilibrium equations of the subbodies.

D. Moment Equilibrium of Whole System

Let t° denote the torques acting at the mass center of the whole system before perturbations, and let T denote those
causing the perturbed motion. The overall moment equilibrium of the system in the unperturbed state may be written as

/va‘,?xiig do+t1=0 (6a)
and the moment equilibrium equation in the perturbed state is
'[,vpixii,-dv+t°—t°><9=T (6b)
Subtracting (6a) from (6b), one obtains
ﬁy(pixb}—p‘gxiig)dv—T——t"Xe:O (6c)
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Substituting p; from (2c), and after the cancellation of p¢ X pSterms and linearizing, using (1d), (1a), (1b), (lc),

(1e), and (1f), one finally obtains

m; (R° X ii); — m; (R° X m); + m;[R® X (R° X ) — R° X (R° X 0 + 2R° X 6 + Ro X 8)];

+fv[é°><(e°><[5)—e°><(é°><|3+2é°><['5+e°><'[§)+'é°><(e°><e)—e°><('e:°><e+2é°><é

+eX0;do—T—1X68=0 (6d)

which is the moment equilibrium equation of the whole system.

Equations (3d), (4d), (5d), and (6d) are the vectorial equations from which unknown quantities ¢, 6, u; and

[si: i = 1) 2:

lll. Governing Equations in Cartesian Coordinates

Let o, i, and y; denote right-hand cartesian conrdinate
systems attached to and moving with the center of mass
of the unperturbed system, the center of mass of the ith
subbody, and the ith subbody, respectively. Let [a], [r];,
and [y]; denote 3 X 3 matrices where the columns are
the direction cosines of the axes of similarly named
coordinate systems, such that [a] contains the direction
cosines of the o-coordinate axes in the inertially fixed
coordinate system (see Fig. 1), [+]; contains the direction
cosines of the r;-coordinate axes in the o-coordinate
system, and [y]; contains the direction cosines of the
yi-coordinate axes in the r;-coordinate system. Let {u};,
{B}: denote the descriptions of u;, B; in the r;-coordinate
system, and let {6}, {¢} denote the descriptions of 6, ¢
in the a-coordinate system. Let {R.}; and {e.}; denote
the descriptions of R and e! in the a-coordinate system,
and {R-}; and {e-}; those in the r;-coordinate system.

" With these definitions, Eqgs. (3d), (4d), (5d), and (6d) may
be expressed in ¢- and r;-coordinate systems as in Table 1
where a tilde has the meaning of

aX b= [a]{b} = — [D]{a) (7a)

where {a} and {b} are the descriptions of a and b in a
right-hand cartesian coordinate system. If a,, a,, and as
are the components of a in this coordinate system, it
may be observed that

0 - a3 o
[@ = a, 0 —a, (7b)
—a, a, 0
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---,n can be obtained with the knowledge of initial conditions.

and

[@]= —[al" (7e)

where superscript T indicates transposition. Moreover, if
{a.} is the description of a in the a-coordinate system,
and {a.} is the description of a in the r-coordinate
system, then

(@} = []{a=) (7d)
and
(r1(an = [[@][" (7e)

The identities given by Egs. (7) are all used in obtaining
the governing equations in Table 1 from Egs. (3d), (4d),
(5d), and (6d).

IV. Special Cases of Steady Motion

One can specialize the formulation given in Table 1
by assuming steady rotational motion. Let @ denote the
rotation vector of the whole system relative to the fixed
coordinate system, ', the rotation vector of the r;-
coordinate system relative to the a-coordinate system,
and G; the rotation vector of ith subbody itself relative
to the 7;-coordinate system. Let {wo}, {we}, and {w:};
denote the descriptions of & vector in the fixed, a-, and
ri-coordinate systems, respectively. Let {Q¢};, {Qa}; and
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{@:};, and {Go}i, {Ge}s, and {G:}; denote the descrip-
tions of Q; and G; vectors in the coordinate systems
implied by their subscripts (subscript zero is for the
inertially fixed coordinate system). With these definitions,
one may write that

{wo} = [al{wa} = [a]([r]{er}): (8a)
{2} = [al{Qa}i = [a]([]{Qr}): (8D)
{Go}s = [al{Ga}s = [al([*[{G}): (8¢)

and
[&] = [@0][o] (8d)
[#1s = ([@a][=1)s (8)
[31: = (IG:11yD)s (8f)

For steady rotational motion about the principal axes of
moment of inertia

which means that in the time derivatives of (8d), (8e),
and (8f)

[ii] = ['5;0] ['5)'0] [a] + [?"‘0][“]
[#]; = ([Sa] [Ba][+] + [Dall1)s
51 = (GG Y]+ [E-1Ty1)s

the second terms on the right are zero; therefore,

[6] = [%][@][0] (8h)
[¥]s = ([al [Bal[a]); (8i)
[5): = ([G-[G-11y]s (8f)

From the definitions of [a] and [r];, it follows that
[a]* = [a]” (8k)
[+];* =17 80
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With the help of Eqgs. (8), one can specialize the general
formulation given in Table 1 for the steady state rota-
tional motion, and obtain the formulation in Table 2.
The formulation in Table 2 may be further specialized
for the following cases.

A. Nonrotating System With No Rotating Paris

If the system is not rotating and it has no rotating
parts, one observes that

0):9,:(;1:0 (120,1,,71) (Qa)
This implies that
{wa} = {w'r}i = {Qa}i = {QT}z = {GT}q‘, =0
(i=0,1,-,n) (9D)

By using Egs. (9b) in Table 2, the governing equations
of this case may be obtained as in the next table (see
Table 3). This case is dealt with in Ref. 4.

B. Rotating System With No Rotating Parts

In this case

Qq,:G,:O (i:O,l,",n) (loa)
but w40, From (10g), it follows that
{Qa}s = {Q+}; = {G:}, =0 (i=0,1,---,n)
(10b)

By using Eqs. (10b) in Table 2, the governing equations
of rotating system with no rotating parts may be obtained
as in Table 4. This case is dealt with in Ref. 3.

C. Rotating System With Rotating Parts Where Q; = 0
In this case @ 40, and G; 540, but

Q; =0 (i=0,1,,n) (11a)

which implies that

{Qe}i = {2} =0 (i=0,1,---,n)

(11b)

Using Egs. (11b) in Table 2, one obtains the formulation
given in a later table (see Table 5).
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V. Matrix of Transfer Functions Relating Control Torques to Attitude Angles

In this section only the governing equations given in Tables 3, 4, 5 are considered. These equations are for the
small perturbations from the nominal motion. The perturbations are caused by the control torque {T}. The angles
{8} represent the errors in the attitude angles. The second order system in Table 5 contains state variables {c}, {6},
{u}i, and {8}, i=1, 2, -+, n, from which {¢}, {u};, and {B};, i =1,2,---,n are to be eliminated. The required
matrix of transfer functions can be obtained from the remaining equations with relative ease.

The first vector in the right hand side of the equations in Table 5 represents the elastic and damping forces caused
by the perturbation deformations, the second vector in the right hand side represents the effect of initial stresses
which may exist before perturbations, and the last vector in the right hand siderepresents the control torques which
are assumed to be acting at the center of mass of the system before perturbations.

Let the stiffness matrix (Ref. 5), the geometric matrix (Ref. 6), and the general damping matrix (Ref. 7) associ-
ated with {u}; and {B}, directions be denoted by

Ky ;quaﬁ oy | Kef, iy cif
Kg | K KE:, | K8} oty | off
respectively. With these, one may write
F,— 2 X0 — (f X B); K + K | K3 + K%, u; e | oy U
S = e el IR G A+ | e e I - (12a)
F, — £ X 8 — (f” X B); K8 + K8 | K85 + K88, Bi off | cff Bi
Substituting these into the governing equations in Table 5, one obtains
B Auu 0 E Aue E Auc T 1r 3 uu uf ue i ue T i u uf3 ue ue ]
i AT AT u; By By | By | By . Cip i Cif | Ci* 1 CF u; 0
! : ; — : Mot N0 I TN TR NN SRR N DU B
0 A8 A?"i 0 B; Bév: B8S: B i 0 B; Cée: C881CB: 0 Bi 0
- ------- + | et el e s el I et = (oo
Al A Al 0 6 Bev B B 0 6 Co{C¥PiCe; 0 6 T
0{0f0}0 ¢ 0i0:01{0 é | Cri 00 LT c 0

(12b)
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By} | Bif | By | BY° byt 0 | b bye cpicfi 00
By | B | BI| 0 0 | bibg i 0 off | i 0|0
-------- =2 + | - (12¢)
By i B Be | 0 by i by i b | 0 0:0i{01i0
0io0io0 o0 0i0i0i0 0ioioio
and
Cy | Cyf i CyiCy dip i 0 dydye Kyt + Kty (K + K0 0 1 0
CHicCEicei 0 0 {dffidpi o Ky + Ky | KE + K 0 1 0
o — R [——— ! (12d)
CoiCeB i Col 0 dov i des i de | 0 0 0 00
Ci 010 i1 dei 0 | 0 | I 0 0 00

and all others are as defined in Table 5. Equations (12b) may be put in a more useful form by reordering {«}; and {8};
subvectors as in {(u, 8);} = {q:}:

agiawiae | (6| [Buisrise](a) [egiceice] (a) (o0
A i A 0 6\ 4| BeiBe| o 6\l cuiceio o V={rT (12¢)
0i0io0 g 0040 é)Lngioiz c 0
where
[Bg] =2[by] + [c4] (12f)
and
[C3g] = [dgg] + [Kyg] + [Ka,] (12¢)

Matrices [A%], [b9], and [d{9] are always at the most tridiagonal, and matrices [c%?], [K3,;], and [K$] are usually
banded. Matrices [A%] and [K] are always symmetric and positive definite. In the absence of damping, matrix
[c99] is a zero matrix. Matrix [K%,] may or may not be symmetrical; however, it is always zero in the absence of
initial stresses. If there are no rotating subbodies, i.e., if G; =0 for all i, then [b%9] is skew-symmetric, and [d%]
can be assumed symmetric by ignoring the skew-symmetric part, as explained in the next paragraph.
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It may be observed from Table 4 that one of the generating submatrices of [d%], that is, [N-]; is not symmetrical;
however, it may be expressed as the sum of a symmetric and a skew-symmetric matrix:

[N:] = [n:] + [n]] (13a)

where the symmetric matrix may be expressed as

tnrde = [ o[ 157 e HeNNE ~ Lordten) lerdton) 1] + - (erdler)(wr} o] + (or)Lor] e e |0 iz

and the skew-symmetric matrix is

[n1]: = 5 f W{er}[ex]{or} [or] — {or} [or] {er) [e:]) do (13¢)

Observing that the norm of [n’]; is at least one order of magnitude smaller than that of [n.]; for small rotation
rates, the approximation of

[N:]i =~ [n:]: (134d)

may sometimes be justifiable.

Note that the state variables {c¢} can be easily eliminated from the differential equations set of (12¢) at the expense
of losing the bandedness of matrices [A%], [B%], and [C%], since the elimination process amounts to replacing all
the zero entries of these matrices with nonzero quantities (see Ref. 3). In this work, the elimination of {c} is per-
formed after the generation of the eigenvectors of the homogeneous system

[A91{g,;} + [BY1{g;} + [C]{q;} = {0} (13e)

which is associated with the first group of equations in (12e¢). This way of elimination is justified since {c}
represents the shift in the center of mass of the whole system because of perturbed deformations (see Eq. 3d).

To describe the procedure adopted in this work, one may rewrite Eqgs. (12¢) as

By (A1 | (4 cyi o |la BriAr t(¢) |crio (e Aw |Gy | Be 6y | ce [(o)
........ ;____-_ e -___ SO G _ UGN S _____-%__. e — —— + - R R
—A 0 |(4 0 A% | (4 00 |{¢ 010 |(¢ 0 0 0
(140)
. . q; q;
[A](} + [B1{d} + [C1{6} + [ByriAy] -ty + [Crai0]{ -~ = (1) (14b)
g; q;
c Ccse 0 q;
= ..-____: ------------ (140)
¢ 0:iCe| (4
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Reordering these equations by {(¢,4);} = {Q;} and {(c,6)} = {£}, one may write

[BYI{Q;} + [CEA(Q;} = — (IBYEI{E) + [CH(&}) — ([AL1{8) + [BF1{6} + [CL1{6)) (14d)
[A*]{6) + [B*1{6} + [C*1{6} + [B*H{Q;} + [C;2HQ;} = {T) (14¢)
{¢& = — [C5*{Qs} (14f)

where matrices [A9?] and [Bf] are banded similar to [A%] and [B¥] of Eq. (13¢) but their order is twice as much.
Consider the homogeneous problem

[BY1(Q;) + [C#1{Q;} = {0} (14g)
and its adjoint
[B9917(Q } + [C9917{Q7 } = {0} (14h)

These homogeneous problems do have the same eigenvalues. The eigenvectors of Eq. (14g) are orthogonal to those
of (14h) with respect to [B%] and [C9?]. Let [®;,] and [®] ] denote the r eigenvectors of (14g) and (14h), re-
spectively, such that

{Q;} = [®;{ys} (15a)

is an acceptable approximation. Note that usually 7« n. Substituting {Q;} from (15a) into (14d), (14e), and (14f), and
premultiplying both sides of (14d) with [®/,]7, one obtains

[Bu1{g,} + [C 1y} = —([BEI{&} + [C#1{&}) — ([AX {8} + [By1{6}) + [Cy1{6} (15b)
[A*1{8)} + [B*]{6} + [C*1{6} + [B1{5,} + [C31{ys} = (T} (15¢)
{&} = — [C§" [{y»} (15d)

Note that [B%] and [C¥] are diagonal matrices of order r (indices p and g run from 1 to r, as differentiated from
indices i and j, which run from 1 to n). Now, one may substitute {£} from (15d) into (15b) to eliminate {£} from
the equations

([B1 — [BEIICE D{g,} + ([C] — [CIICE )y} = — ([Ay1{8) + [BY1{d} + [CLI1{6}) (15¢)

Equations (15¢) and (15¢) are equivalent to those of (12¢) with the approximation of (15a). In order to eliminate
variables {y,} from the set of equations, consider the homogeneous part of (15¢)

([B1 — [BEICY D{w} + ([CH] — [CEICH Dy} = {0} (15f)
and its adjoint
([B*] — [B#][C&#])"{y} + ([C?] — [C¥#][C¥]){y’} = {0} (15g)
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These homogeneous problems do have the same eigenvalues, but in general have different eigenvectors. Let [yy,]
and [ll/;q] denote the eigenvectors of (15f) and (15g), respectively. One may use the transformation

{4} = [¥wal{2a} (16a)

in (15e) and (15c) and premultiply both sides of (15¢) by [¢7,]7 to obtain

[Bz:1{z,) + [C =z} = — ([Az 1{6} + [Bz°1{6} + [Cz1{6}) (16b)

and

[Ac]{6} + [B*]{6} + [C*}{6) + [Bg*1{2} + [C&1{ze} = {T) (16¢)

where [B22] and [C%?] are diagonal matrices of order r.

In order to eliminate variables {z,} from equations (16a) and (16b), one may use Laplace transforms. This trans-
formation is also convenient for expressing the transfer functions. Let {z,(s)}, {6(s)}, and {T(s)} denote the Laplace
transforms of {z,}, {6}, and {T}, respectively. Let s denote the complex frequency. From the Laplace transform of
Eq. (16b) one may write

{z(9)) = — [sBzz] + [Cz]] ' [s*[Az*] + s[Bz] + [Cie1]{6(s)} (17a)

assuming that the inverse exists. This assumption is possible as long as the eigenvectors used previously are linearly
independent. The inverse matrix is a diagonal matrix of order r. Substituting {z,(s)} from (17a) into the Laplace
transform of (16¢), and inverting the coefficient of {6(s)}, one obtains

{6(s)} = [G(s){T(s)} (17D)
where
[G(9)] = [s?[A*]+ s[Be]+ [Coe] - [s[Be ]+ [Cy11[s[Bzz] + [Czzl 1 [s*[Aze ] +s[Bz] +[Cee 11T (17c)
which is the required matrix of transfer functions.

The success of the procedure described above depends on the acceptability of the approximation (15a), and
the computation of r eigenvectors of (14g), (14h), and all the eigenvectors of (15f) and (15g), and the linear inde-
pendence of these eigenvectors. If the matrices in equations (14g) and (15f) are symmetric, the eigenvectors
of the adjoint problems are the same as those of (14g) and (15f). When [C%] is symmetric and positive definite
and [BY] is skew-symmetric, the eigenvectors of (14g) may be obtained by an extended Sturm sequence method
for Hermitian matrices (see Ref. 8). However, in general, matrices [B%] and [ng ] may not have these favorable
properties, in which event, for the economical solution of the eigenvectors of (14g) and (14h), an efficient algorithm
which takes into account the bandedness of the coefficient matrices is needed. The eigenvalue problems associated
with (15f) and (15g) are relatively easy, since these systems are only of order » whereas the ones associated with
(14g) and (14h) are of order 12n (r « n).
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Vi. Summary

In this work, the governing equations of small vibra-
tions and perturbations of structures undergoing arbi-
trary motion are obtained for the following cases:

(1) Independent of a coordinate system, in vector nota-

tion, in Eqs. (3d), (4d), (5d), and (6d).
(2) In cartesian coordinates in Table 1.

(3) In cartesian coordinates for steady nominal motion
in Table 2.

(4) In cartesian coordinates for nonrotating system
with no rotating parts in Table 3.

(5) In cartesian coordinates for nominally rotating sys-
tem with no rotating parts in Table 4.

JPL TECHNICAL REPORT 32-1477

(6) In cartesian coordinates for nominally rotating sys-
tem with nominally rotating parts in Table 5.

A method is described for the elimination of undesired
state variables with the objective of obtaining the matrix
of transfer functions relating control torques to attitude
angles. This method takes into account the bandedness
of the coefficient matrices.

The formulations given in this work may be used in
analyzing the vibrations of rotating or nonrotating flex-
ible structures with or without rotating parts, as well as
in obtaining the open loop transfer functions related with
the “dynamic blocks” of control systems of spin-stabilized,
dual-spin-stabilized satellites, and those spacecraft which
use reaction wheels or gas jets for attitude control.
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